APPENDIX B

TRAVEL DEMAND FORECASTING and AIR QUALITY CONFORMITY ANALYSIS METHODOLOGIES

Supporting Documents TRANPLAN Input and Output Files Travel Demand Mode File Summary Mobile 6.2 Input File Mobile 6.2 Output Summary AIRS Format Analyses for 2010, 2020 and 2030 Emissions Summary This appendix provides additional documentation regarding the travel demand forecasting and air quality conformity analysis procedures used in the update of the Dover/Kent MPO long range transportation plan. Included in the appendix are the following:

- Outline of steps completed in this analysis
- MOBILE 6.2 input files
- MOBILE 6.2 output files
- Sample of INTERNOC output & results
- A spreadsheet presenting HPMS and SIP adjustment factors for VMT
- TRANPLAN Job Control Input Statement Files for 2010, 2020, and 2030
- TRANPLAN network link coding data for 2010, 2020, and 2030 projects

Outline of Steps:

The following steps were completed in this conformity analysis:

1. Travel Demand Modeling:

One of the primary technical tools used in the systems evaluation phase of the overall transportation plan update project was a travel demand modeling process developed by DelDOT. The modeling process used in this air quality analysis used a 2002 base year network validated against 2002 traffic counts at key locations throughout Kent County. The general travel demand modeling approach used in this systems evaluation was based on a 1993 modeling validation, which was updated at the outset of this transportation plan update to reflect 2002 traffic conditions. For more information on the 1993 modeling validation refer to the report "Kent-Sussex Counties Travel Demand Model" prepared in November 1993 by Vanesse, Hangen, Brustlin (VHB, Boston, Massachusetts) for DelDOT's Division of Planning.

Travel demand models were developed for the years 2010, 2020, and 2030. The first step in that development was estimation of population and employment data to be used in the plan update. Those data were derived through the following steps:

- a) Estimates of population and employment data at the traffic zone level were developed for each of those years by the University of Delaware's College of Urban Affairs and adopted by the Dover/Kent MPO in April, 2004.
- b) The control totals for Kent County were subsequently updated in the Summer of 2004 by the Delaware Population Consortium and were deemed to be appropriate for this transportation plan.
- c) The Dover/Kent MPO staff initiated a process to revise the traffic zone level data adopted in April, 2004 to reflect and account for the Summer, 2004 Delaware Population Consortium control totals for Kent County. This process occurred in the Fall of 2004 and culminated with the adoption of a set of population and employment data, at the traffic zone level, by the MPO Council on December 17, 2004.

Transportation network files in TRANPLAN format were also developed for each of the years 2010, 2020, and 2030. The process included coding highway improvements currently planned, funded and/or anticipated to be "in service" for each of those years, as well as coding certain proposed highway improvements.

The complete list of planned and proposed highway improvements recommended by this transportation plan and the assumed year each would be "in service" is included elsewhere in the plan. Note that the list of proposed highway improvements and in-service assumptions were developed for analytical purposes in evaluating the transportation plan. The list is a general guide as to the relative timing and priority of various projects, and is not intended to be a program of schedule projects and does not imply that funding has been committed to the planning or evaluation of any project.

Once demographic and highway network data were developed for each of the years, the travel demand model was run to estimate traffic volumes and speeds for each of the roadway segments included in the model network. The "No-Build" scenario for each of those years consisted of the 2002 existing conditions roadway network plus those projects currently under construction or already planned to be in place and open to traffic. The "Build" scenario for each year consisted of the "No-Build" network plus those projects proposed through this plan as identified in the appendix.

Included in this appendix is a subset list of those highway projects contained in this transportation plan which could be included in the travel demand model. Also shown are the network link coding data for specific projects for the 2010, 2020, and 2030 horizon years. The primary network link coding fields used to describe those projects are TIME1 which is "average travel time", a function of average link speeds and distances, and CAPACITY1 which is an estimate of 24-hour or "daily capacity" based on LOS E peak hour capacities.

The projects included in the list of proposals were developed through a series of model runs made to examine traffic volume, travel pattern, and "level of service" conditions for Appendix B: Page B 3

2030. Note that the same population and employment estimates were used for both "No-Build" and "Build" scenarios for 2010, 2020, and 2030. In addition, the same travel demand modeling parameters such as trip generation rates, trip length distributions, etc. were used for all 2010, 2020, and 2030 scenarios.

The product of the travel demand modeling process was a "loaded network history file" for each analysis year in TRANPLAN proprietary FORTRAN format. This file contained the estimated traffic volumes and speeds on each roadway segment. Each year's file was converted to ASCII format for processing in the emissions estimation program, INTERNOC, described below.

2. Emissions Factor Modeling:

A MOBILE6.2 input file was developed for each of the following years: 2010, 2020, and 2030. MOBILE6.2 is the version of the EPA-developed software that must be used by air quality, transportation, and regional planning agencies to analyze air quality programs. The input files specified the types of required and planned mobile source emission reduction programs that are currently used or will be in place in each of those years. As submitted by DNREC to the EPA, each input file reflected strategies anticipated according to the State Implementation Plan (SIP) and its amendments. For example, a typical MOBILE6.2 input file would define county-specific atmospheric data, vehicle registrations by model year, and vehicle emissions testing programs (such as the "on-board diagnostics test" conducted in Kent County).

The product of the emissions modeling was an "emissions factor" file for each analysis year. This file included average emissions rates for VOC and NOx, for each one-mile per hour speed increment from 3 miles per hour to 65 miles per hour. (CO calculations were also produced but not used because Kent County is "in attainment" for that compound). Based on this emissions factor file and a traffic estimate for a given roadway segment, one could calculate the amount of emissions on each segment simply by multiplying the emissions rate by the traffic volume. For example:

Assume:

State Route A has 50,000 vehicles per day on a one-mile segment. State Route A operates at 35 miles per hour, on average, in 2005. The NOx emissions rate for 35 miles per hour, in 2005, is 1.45 grams per mile per day.

Emissions Calculation:

- 1. (50,000 vehicles) x (one mile segment) = 50,000 vehicle miles traveled (VMT)
- 2. (50,000 VMT) x (1.45 grams per mile) = 72,500 grams of NOx
- 3. 72,500 / 907200 grams per ton = 0.08 tons per day.

The emissions factor file is important because VOC emission rates tend to decrease as average roadway speeds increase. NOx emissions, on the other hand, tend to increase as speeds increase. The file identifies a specific NOx and VOC emissions rate for each one-mile per hour speed increment.

Copies of the MOBILE6.2 input and output files for each analysis year are included in the appendix. The output files shown in this report were created using "80-column" print format for ease of reading (OUTFMT=3); the output files used in the actual analysis used "spreadsheet format" (OUTFMT=6) which is more easily read by computer programs.

3. Mobile Source Emissions:

A post-processing "linkage" program called INTERNOC was developed for the DelDOT's Division of Planning. The program multiplies the estimated volume on each segment of the roadway network (output from the travel demand model) by the appropriate emissions rate (output from the MOBILE6.2 program) corresponding to each segment's average speed. The program essentially performs the calculation shown in the above example, but does the calculation for each roadway segment included in a travel demand model's network coverage. The program also converted the "average daily traffic" produced by the travel demand model into "peak ozone season" or "summer traffic" levels by multiplying each roadway segment by a countywide seasonal adjustment factor.

The traffic volume on each segment of roadway in Kent County was multiplied by a seasonal adjustment factor. This was done for each analysis year. Once emissions for each segment were calculated they were summed to identify the county-wide totals presented in the plan document. The emissions for each roadway segment for each analysis year are shown in the appropriate "*.PLN" file included in the appendix. One such file was created for each separate analysis year.

The first two columns in the "*.PLN" file identify the "A" and "B" nodes defining individual roadway segments. The third column shows the estimated vehicle miles traveled (VMT) for each segment; this is simply the estimated volume for each link segment multiplied by its length in miles. The fourth column included the average travel speed for each segment; this is the "loaded" speed referring to the average speed of travel with "all traffic" using the highway system. The last three columns in the right side of the page refer to the VOC, CO, and NOx emissions for each roadway segment. The last line of each file illustrates the county-wide sums for VMT, VOC, CO, and NOx for each analysis year.

4. Perform SIP Adjustment Process:

The appendix also includes a worksheet that shows how adjustment factors were calculated and applied to convert the raw seasonally adjusted VMT VOC, and NOx data for each year's modeling into numbers which could be directly compared to emissions data shown in Delaware's SIP documents for Kent County. The adjustment factors align the model outputs with DelDOT's Highway Performance Monitoring System (HPMS) which is an EPA requirement for mobile source air quality planning.

5. Conduct Conformity Test:

The conformity test involved a comparison of the NOx and VOC emissions for the "Build" scenarios for 2010, 2020, and 2030 to the allowable NOx and VOC emissions budgets as defined in Delaware's "Year 2005 Attainment Plan MOBILE6" SIP submitted by DNREC to the EPA.

The conformity rule under which this transportation plan was developed requires the "Build" scenario for each analysis year to generate emissions levels that are less than the emissions for 2005. Since this transportation plan meets those criteria it was determined to be in conformity with the SIP.

TRANPLAN Network Link Coding Data for "Build" Projects

Projects Added to 2005 Network to Create 2010 Build Network:

	Link	Base TIME1	Base CAPACIT	Build Y1 TIME1 CAPA	Build CITY1
Complete Governors Avenue corridor and intersection					
improvements:	2919-284	2 112	4350	100	5000
	2842-291	8 69	4350	62	5000
	2918-297	5 182	4350	164	5000
Complete Harrington Truck Route	2757-3336	5 -	-	137	5100
Upgrade College Road To an Urban Standard	2938-2939	188	3560	170	4000
Complete Carter Road Improvements from DE 300 to Sunnyside Road	2859-3324	209	3750	190	4000
Construct a Connector Road Between Garrison Tract and DE 8	2905-3217	-	-	91	5000

Projects Added to 2010 Network to Create 2020 Build Network:

	Link	Base TIME1	Base CAPACI	Build TY1 TIME1 C	Build APACITY1
Complete Kenton Road					
Corridor Improvements	3290-2942	69	4350	62	5000
-	3290-2940	77	4350	69	5000
	3940-2939	10	5500	9	6000
	2939-3283	122	4350	110	5000
Upgrade SR 36 west of US 113	2718-3074	292	4350	263	5000
	3074-3073	215	4350	194	5000
Upgrade DE 14 from DE 15 to					
Church Street	2762-2763	138	6500	124	7000
	2719-2763	87	6500	78	7000
Upgrade DE 42 between					
Kenton Road and US 13	2876-2877	397	4140	357	5000
	2875-2876	239	3600	215	4000
	2730-2875	133	4040	120	4500
	2730-2874	59	4350	53	4600
	2607-2874	106	4040	96	4500

DOVER/KENT COUNTY MPO LONG RANGE TRANSPORTATION PLAN UPDATE - ADOPTED May 4, 2005

	Link	Base	Base CAPACITY1	Bu TIMF1 CA	
Upgrade New Burton Road	LIIIK			TIMET CA	
Between Wyoming and Dov	ver 2669-2686	52	4350	47	4600
Detween wyoning and Do	2686-2949	74	4350	67	4600
	2843-2949	60	5500	54	6000
	2843-2974	99	5500	89	6000
	2973-2974	129	5500	116	6000
	2713 2711	12/	5500	110	0000
Construct West Dover Conr	nector				
(Concept 5 Assumed)	2951-3338	-	-	200	6000
	2338-3339	-	-	225	6500
	3339-3340	-	-	50	6000
	3339-3341	-	-	15	6000
	3341-3342	-	-	180	6000
Upgrade DE 15 between DE					
And DE 14	2977-3006	422	4350	380	5000
	3005-3006	73	4350	65	5000
	3004-3005	173	4350	155	5000
	2630-3004	104	4140	93	5000
	2630-3032	52	4350	47	5000
	3032-3034	116	4500	105	5000
	3034-3036	416	4500	375	5000
	3036-3037	250	4500	225	5000
	3037-3046	175 526	4500	158	5000
	3045-3046 2762-3045	536 250	4500 4500	482 225	5000 5000
	2702-3043	250	4300	223	5000
Upgrade McKee Road/Sauls Road from Denny's Road to					
Lynnbury Woods Road	2891-2892	130	3750	117	4000
	2874-2891	245	4040	220	4500
Extend Crawford Carroll Av	venue				
To DSU	2913-3228	-	-	84	5000
Construct Connection betwee					
Construct Connection betwee Carter Road and SR 1	2811-3343			95	5000
Carter Road and SK I	2011-3343	-	-	95	3000
Upgrade Carpenter Bridge H	Road				
From Frederica to DE 15	3040-3046	349	3750	314	4000
Upgrade Irish Hill Road from		6 6 0	44.40	600	
US 113A to US 13	2997-2998	668	4140	600	5000
	2998-2999	115	4140	103	5000
	2999-3038	258	4140	232	5000
	3033-3038	201	4140	180	5000
	3032-3033	31	4350	28	5000

	Base	Base		Build	Build
	Link	TIME1	CAPACI	TY1 TIME1	CAPACITY1
Widen US 13 to 6 lanes from					
Smyrna to Dover	2811-3325	30	16000	30	24000
	2605-3325	126	16000	126	24000
	2605-2606	174	16000	174	24000
	2606-2607	163	16000	163	24000
	2607-2608	201	16000	201	24000
	2608-2820	57	15860	57	24000
Complete Conversion of SR 1					
South of DAFB to limited					
Access highway.	2990-3066	184	34780	184	38000
	2990-2995	80	16000	80	20000
	2995-2996	166	16000	166	20000
	2996-3044	280	16000	280	20000
	3043-3044	75	16000	75	20000
	2836-3043	201	16000	201	20000
	2723-2836	202	16000	202	20000
	2722-2723	289	16000	289	20000
	2722-3328	103	16000	103	20000
	2721-3328	156	16000	156	20000
	2721-3089	210	16000	210	20000
	2771-3089	221	16000	221	20000

Projects Added to 2020 Network to Create 2030 Build Network:

U.S. Department Federal Transit Federal Highway of Transportation Administration Administration 1760 Market Street 300 South New Street Suite 500 Room 2101 Dover DE 19904 Philadelphia PA 19103 JUL 1 1 2005 Mr. Anthony J. DePrima Chairman Dover/Kent County Metropolitan Planning Organization P.O. Box 383 Dover, Delaware 19903 Re: Air Quality Conformity Determination - Dover/Kent County Metropolitan Planning Organization's FY 2006-2008 TIP and 2030 Regional Transportation Plan Dear Chairman DePrima: The Federal Highway Administration (FHWA) and the Federal Transit Administration (FTA) have completed our review of the Dover/Kent County Metropolitan Planning Organization's (MPO) air quality conformity documentation for the FY 2006-2008 Transportation Improvement Program (TIP) and the new 2030 Regional Transportation Plan (RTP). Based on the information provided with Ms. Juanita Wieczoreck's May 13, 2005, and June 1, 2005, letters, and in concurrence with the Environmental Protection Agency and the Delaware Department of Natural Resources and Environmental Control, FHWA and FTA have determined that the Conformity Determinations for the FY 2006-2008 TIP and the 2030 RTP for the Dover/Kent County non-attainment area adequately address and meet the requirements as specified in the November 1993 Federal Conformity Rule and its subsequent amendments. This action rescinds the conformity lapse issued June 15, 2005. Any questions concerning this approval should be directed to Paul Lang, FHWA Delaware Division, 302-734-2835, or Anthony Tarone, FTA Region III, 215-656-7061. Sincerely, 11 sa Raymond J. McCormick Susan Borinsky **Regional Administrator Division Administrator** Federal Highway Administration Federal Transit Administration

Page 2 cc: via e-mail: Carolann Wicks, Chief Engineer, DelDOT Ralph Reeb, Director, DelDOT Planning Steven Kingsberry, Acting Director, Delaware Transit Corporation, DelDOT Susan Borinsky, Regional Administrator, Region 3, FTA Raymond J. McCormick, Division Administrator, FHWA Kathy English, Director, DelDOT Finance Earle Timpson, DelDOT Finance Robert Carver, DelDOT Finance Interagency Air Quality Consultation Process Work Group: Juanita Wieczoreck, Executive Director, Dover/Kent County MPO Tigist Zegeye, Executive Director, WILMAPCO Larry Budney, EPA Region III Martin Kotsch, EPA Region III Tony Tarone, FTA Region III Paul Lang, DE Division, FHWA Joe Cantalupo, DelDOT Planning Mark Glaze, DelDOT Planning Scott Clapper, DelDOT DMV Ray Malenfant, DNREC Phil Wheeler, DNREC Tammy Popov-Ford, TMA of Delaware

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION III / 3 1650 Arch Street Philadelphia, Pennsylvania 19103

Mr Paul Lang Federal Highway Administration J. Allen Frear Federal Building 300 South New Street, Suite 2101 Dover, Delaware 19904-6726 JUN 0 9 2005

Dear Mr. Lang:

The U.S. Environmental Protection Agency (EPA) has reviewed the 8-hour ozone transportation conformity determinations for the FY 2006-2008 Transportation Improvement Programs and 2030 Regional Transportation Plan for Kent County Delaware submitted to us with your letter dated May 20, 2005. EPA reviewed the conformity determinations in accordance with the procedures and criteria of the Transportation Conformity Rule contained in 40 CFR Part 93, Sections 93.106, 93.108, 93.110, 93.111, 93.112, 93.113(b), 93.113(c), 93.118 and 93.119.

Our review of the conformity determinations for Kent County indicates that the determinations meet the requirements of the Clean Air Act and the applicable regulations promulgated thereunder at 40 CFR Part 93. Enclosed, please find EPA's detailed evaluations titled "Technical Support Document for Review of 8-Hour Ozone Conformity Determinations for the Kent County, Delaware FY 2006-2008 Transportation Improvement Program and 2030 Regional Transportation Plan".

If you have any questions, please contact Carol Febbo, Chief, Energy, Radiation, and Indoor Environment Branch, at 215-814-2076 or Martin Kotsch, at 215-814-3335.

Sincerely Judith M. Katz, Director

Air Protection Division

Enclosure

cc: Juanita Wieczoreck (Kent/Dover MPO) w\enclosure Joe Cantaloupo (DelDOT) w\enclosure Tony Tarone (FTA) w\enclosure Ray Malenfant (DNREC) w\enclosure

Customer Service Hotline: 1-800-438-2474

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION III 1650 Arch Street Philadelphia, Pennsylvania 19103

June 7, 2005

SUBJECT: Technical Support Document for Review of 8-Hour Ozone Conformity Determinations for the Kent County, Delaware FY 2006-2008 Transportation Improvement Program and 2030 Regional Transportation Plan

FROM: Martin Kotsch, (3AP23)

TO: Administrative Record of EPA's Review of 8-Hour Ozone Conformity Determinations for the Kent County, Delaware FY 2006-2008 Transportation Improvement Program and 2030 Regional Transportation Plan

THRU: Carol Febbo, Chief Cafebbo 6/7/05 Energy, Radiation and Indoor Environment Branch (3AP23)

The purpose of this document is to review 8-hour ozone transportation conformity determinations for the Kent County, Delaware FY 2006-2008 Transportation Improvement Program (TIP) and 2030 Regional Transportation Plan (Plan) and to determine whether or not the conformity determinations meet the requirements of the Clean Air Act and the applicable regulations promulgated thereunder at 40 C.F.R. Part 93. On May 24, 2005, EPA Region III received the Kent County conformity determinations for the Plan under a cover letter dated May 20, 2005 from the Delaware Division Office of the Federal Highway Administration (FHWA) and the TIP under a cover letter dated June 1, 2005. The conformity determinations were prepared by the Dover/Kent County Metropolitan Planning Organization (MPO). The conformity determinations were reviewed in accordance with the procedures and criteria of the Federal Transportation Conformity Rule, 40 CFR Part 93, Sections 93.106, 93.108, 93.110, 93.111, 93.112, 93.113(b), 93.113(c) and 93.118.

The Kent County area is a moderate 8-hour non-attainment area for ozone with the same geographical boundaries as its previous 1-hour non-attainment area. For the 8-hour conformity analysis, the 2005 Attainment SIP budgets for the 1-hour standard are applicable for use in the 8-hour conformity analysis per 93.109(e) of the conformity rule since there are no current adequate or approved 8-hour mobile budgets.

	GENERAL CRITERIA APPLICA	BLE T	O BOTH PLAN AND TIP
SECTION of 40 CFR Part 93	CRITERIA	Y/N	COMMENTS
93.110	 Are the conformity determinations based upon the latest planning assumptions? (a) Are the conformity determinations, with respect to all other applicable criteria in §§93.111 - 93.119, based upon the most recent planning assumptions in force at the time of the conformity determinations? (b) Are the assumptions derived from the estimates of current and future population, employment, travel, and congestion the most recently developed by the MPO or other designated agency? Are the conformity determinations based upon the latest assumptions about current and future background concentrations? 	Y Y Y	(a, b) The conformity determinations are based upon the latest planning assumptions in force and approved by the MPO at the time of the determinations. Year 2004 vehicle registration data were used in the analysis. The analyses utilized socio-economic data based upon the year 2000 U.S. Census demographic data and projected to each of the analysis years.
	(c) Are any changes in the transit operating policies (including fares and service levels) and assumed transit ridership since the previous conformity determination discussed?	Y	There have been no changes in any operating policies or assumptions for ridership since the last conformity determination.
	(d) The conformity determinations must include reasonable assumptions about transit service and increases in transit fares and road and bridge tolls over time.	Y	The conformity determinations included reasonable toll, transit service and fare assumptions.
	(e) The conformity determinations must use the latest existing information regarding the effectiveness of the TCMs and other implementation plan measures which have already been implemented.	N/A	There are no TCMs in the SIP. However, the following implementation plan measures were accounted for in the conformity analyses: the Federal Motor Vehicle Control Program (FMVCP), reformulated gas, Reed Vapor Pressure 7.8 psi for all analysis years, Stage II vapor recovery, I&M, On Board Diagnostics and anti-tampering programs.

2

	(f) Key assumptions will be specified and included in the draft documents and supporting materials used for the interagency and public consultation required by §93.105.	Y	Key assumptions have been included in the documents and supporting materials used for interagency and public consultation. They were included in the materials made available during the public review period
93.111	Are the conformity determinations based upon the latest emissions model?	Y	The conformity determinations were based upon emission factors developed using MOBILE6.2, the currently-approved EPA mobile emissions model.
93.112	Did the MPO make the conformity determinations according to the consultation procedures of the conformity rule or the state's conformity SIP?	Y	Consultation has occurred among all appropriate agencies. A public comment period was held from March 23 to April 27, 2005 on the Plan and from April 13 to May 13, 2005 on the TIP. No comments were received on the conformity determination.

3

	SPECIFIC CRITERIA APP	LICAB	LE TO THE PLAN
SECTION of 40 CFR Part 93	CRITERIA	Y/N	COMMENTS
93.106(a) (1)	Are the horizon years correct?	Y	The years 2010, 2020 and 2030 are appropriate horizon years.
93.106(a) (2)(i)	Does the plan quantify and document the demographic and employment factors influencing transportation demand?	Y	Chapter 4 of the Plan discusses demographic and employment factors.
93.106(a) (2)(ii)	Is the highway and transit system adequately described in terms of the regionally significant additions or modifications to the existing transportation network which is envisioned to be operational in the horizon years?	Y	The highway and transit system is adequately described in terms of regionally significant additions or modifications to the existing transportation network, which the transportation plan envisions to be operational in the horizon years.
93.108	Is the Transportation Plan fiscally constrained?	Y	EPA is deferring to the MPO and FHWA who have found the Plan to be fiscally constrained
93.113(b)	Are TCMs being implemented in a timely manner?	N/A	There are no TCMs in the SIP.
93.118	For areas with SIP budgets: Is the Transportation Plan, TIP or Project consistent with the motor vehicle emissions budget(s) in the applicable SIP?	Y	For Kent County, projected emissions for 2010, 2020 and 2030 are less than the 2005 Attainment SIP emission budgets (in parentheses) as shown below (all emissions in tons per day): Year
			2020 2.60 (5.14) 2.01 (8.42) 2030 2.53 (5.14) 1.60 (8.42)

	SPECIFIC CRITERIA AP	PLICA	BLE TO	THE TIP	
SECTION of 40 CFR Part 93	CRITERIA	Y/N	COMN	IENTS.	
93.108	Is the Transportation Improvement Program fiscally constrained?	Y			MPO and FHWA who e fiscally constrained
93,113(c)	Are TCM's being implemented in a timely manuer?	N/A	There a	are no TCMs in th	ie SIP.
93.118 For areas with SIP budgets: Is the Transportation Plan, TIP or Project consistent with the motor vehicle emissions budget(u) in the applicable SIP	Y	2020 a Attains (in pare	nd 2030 are less t pent SIP emission		
			Yest	VOC	NOx
			2010	4.46 (5.14)	5.33 (8.42)
			2020	2.60 (5.14)	2.01 (8.42)
			2030	2.53 (5.14)	1.60 (8.42)

CONCLUSION

Pursuant to FHWA's May 20, 2005 request, we have reviewed the Kent County, Delaware 8hour ozone conformity determinations for the 2006-2008 TIP and 2030 Plan. We have determined that the TIP and Plan meet the requirements of the Clean Air Act and the applicable regulations promulgated thereunder at 40 C.F.R. Part 93.

STATE OF DELAWARE DEPARTMENT OF NATURAL RESOURCES & ENVIRONMENTAL CONTROL DIVISION OF AIR & WASTE MANAGEMENT 156 S. STATE STREET DOVER, DELAWARE 19901

DCVER

FAX No .:

TELEPHONE: (302) 739 - 4791

(302) 739 - 3106

AIR QUALITY MANAGEMENT SECTION

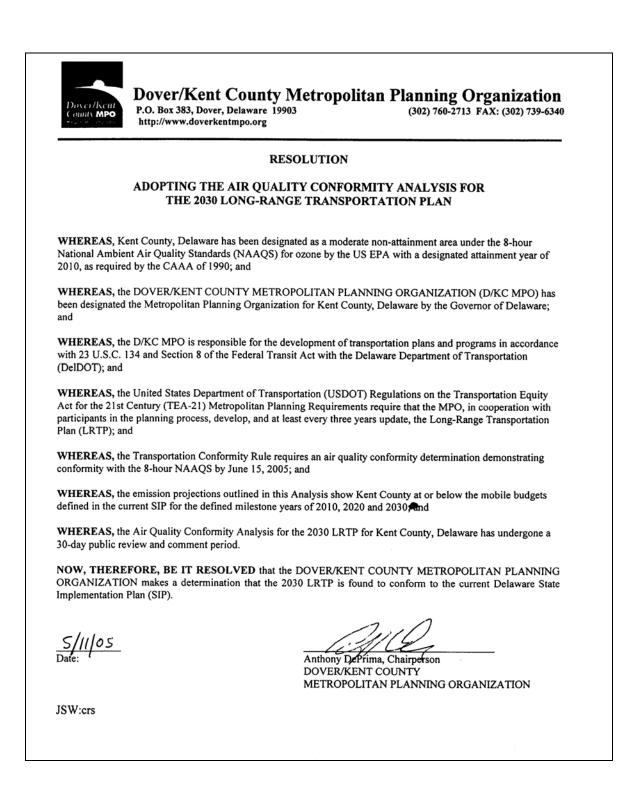
April 27, 2005

Ms. Juanita Wieczoreck Executive Director Dover Kent Metropolitan Planning Organization P.O. Box 383 Dover, Delaware 19903

Dear Ms. Wieczoreck:

This letter is to inform you that we have completed our review of the conformity analysis using the Mobile 6 model of the 2030 Dover Kent MPO Regional Transportation Plan and the 2006-2008 Transportation Improvement Program (TIP). Based on the information provided, the Plan and the TIP were found to be in conformance with the existing Delaware State Implementation Plan (SIP) through procedures prescribed by Gay MacGregor, Director, Regional and States Programs Division, Office of Mobile Sources, US EPA in a memo dated May 14, 1999, and Federal Highway Administration additional supplemental guidance dated June 18, 1999. I see no reason why this conformity analysis should not be deemed complete.

Thank you for your cooperation.


Sincerely malefant

Raymond H. Malenfant, P.E. Program Manager Planning and Community Protection

Cc: Ali Mirzakhalili, DNREC Ronald Amirikian, DNREC Philip Wheeler, DNREC Michael DuRoss, DelDOT Paul J. Lang, FHWA Larry Budney, EPA Region III

Delaware's good nature depends on you!

PRINTED ON RECYCLED PAPER

TRANPLAN Job Control Input Statement Files for 2030

\$HIGHWAY SELECTED SUMMATION \$FILES INPUT FILE = HWYNET, USER ID=\$U030BNET.DAT\$ INPUT FILE = TRNDATA. USER ID = \$K25JTURN.PRN\$ OUTPUT FILE = HWYSKIM, USER ID=\$T030SKM.DAT\$ **\$HEADERS** YEAR 2030 NETWORK T030 - WITHOUT TAZ 106/115 ADJ DK MPO PLAN UPDATE - BUILD HIGHWAY NETWORK RUN MARCH 7, 2005 **\$OPTION TURN FILE \$PARAMETERS \$DATA** TABLE=TIME1 **\$END TP FUNCTION \$MATRIX UPDATE \$FILES** INPUT FILE=UPDIN, USER ID=\$T030SKM.DAT\$ OUTPUT FILE=UPDOUT, USER ID=\$T030SKMT.DAT\$ **\$HEADERS** NO BUILD NETWORK BASED ON W005BNET - ADD TERMINAL TIME TO O/D ZONES **\$OPTIONS** PRINT TRIP ENDS \$DATA ORIGIN, TIME 1, 1-63, + 50 DESTINATION, TIME 1, 1-227, + 50 ORIGIN, TIME 1, 64-87, +100 DESTINATION, TIME 1, 1-227, +100 ORIGIN, TIME 1, 88-227, + 50 DESTINATION, TIME 1, 1-227, + 50 **\$END TP FUNCTION**

\$BUILD INTRAZONAL IMPEDANCES

\$FILES
INPUT FILE=IZIN, USER ID=\$T030SKMT.DAT\$
OUTPUT FILE=IZOUT, USER ID=\$T030INT.DAT\$
\$HEADERS
NO BUILD NETWORK BASED ON W005BNET
\$OPTION
PRINT DETAIL
\$PARAMETERS
NUMBER OF ADJACENT ZONES=3
\$END TP FUNCTION

\$GRAVITY MODEL

\$FILES
INPUT FILE=GMSKIM, USER ID=\$T030INT.DAT\$
OUTPUT FILE=GMVOL, USER ID=\$T030IIA.DAT\$
\$HEADERS
YEAR 2030 NO BUILD NETWORK RUN
\$OPTIONS

MERGED PURPOSE FILE PRINT TRIP ENDS PRINT TRIP LENGTH STATISTICS **\$PARAMETERS** MAXIMUM PURPOSE=3 **ITERATIONS ON ATTRACTIONS=3 \$DATA** \$INCLUDE GM0430 G.PRN **\$INCLUDE GMIIFFKS.TP \$END TP FUNCTION \$MATRIX UPDATE \$FILES** INPUT FILE = UPDIN, USER ID = \$KSEI8525.DAT\$ OUTPUT FILE=UPDOUT, USER ID = \$KSEI8530.DAT\$ **\$HEADERS** TRIP TABLE EXTRAPOLATION KENT & SUSSEX COUNTY 2025 TOTAL EI TRIPS * 1.05 **\$OPTIONS** PRINT TRIP ENDS **\$DATA** T1,1-227,1-227,*1.05 **\$END TP FUNCTION \$MATRIX UPDATE \$FILES** INPUT FILE = UPDIN, USER ID = \$KSEE8525.DAT\$ OUTPUT FILE=UPDOUT, USER ID = \$KSEE8530.DAT\$ **\$HEADERS** NO BUILD NETWORK RUN FOR DK MPO PLAN UPDATE TRIP TABLE EXTRAPOLATION KENT & SUSSEX COUNTY 2025 TOTAL EE TRIPS * 1.05 **\$OPTIONS** PRINT TRIP ENDS \$DATA T1,1-227,1-227,*1.05 **\$END TP FUNCTION \$MATRIX UPDATE \$FILES** INPUT FILE = UPDIN, USER ID = \$KSTT8525.DAT\$ OUTPUT FILE=UPDOUT, USER ID = \$KSTT8530.DAT\$ **\$HEADERS** NO BUILD NETWORK RUN FOR DK MPO PLAN UPDATE TRIP TABLE EXTRAPOLATION KENT & SUSSEX COUNTY 2025 TOTAL TT TRIPS * 1.05 **\$OPTIONS** PRINT TRIP ENDS **\$DATA** T1,1-227,1-227,*1.05 **\$END TP FUNCTION**

\$MATRIX MANIPULATE

\$FILES INPUT FILE=TMAN1. USER ID=\$T030IIA.DAT\$ INPUT FILE=TMAN2, USER ID=\$KSEI8530.DAT\$ INPUT FILE=TMAN3, USER ID=\$KSEE8530.DAT\$ INPUT FILE=TMAN4, USER ID=\$KSTT8530.DAT\$ OUTPUT FILE=TMAN5, USER ID=\$T030ATOT.DAT\$ **\$HEADERS** NETWORK W005BNET.DAT FOR ASSIGNMENT - AADT COMBINING ALL TRIP PURPOSES TOGETHER **\$DATA** TMAN5,T1=TMAN1,T1+TMAN1,T2+TMAN1,T3 +TMAN2,T1+TMAN3,T1+TMAN4,T1 **\$END TP FUNCTION \$MATRIX TRANSPOSE \$FILES** INPUT FILE=TRNSPIN, USER ID=\$T030ATOT.DAT\$ OUTPUT FILE=TRNSPOT, USER ID=\$T030ATRS.DAT\$ **\$OPTIONS** PRINT TRIP ENDS **\$PARAMETERS** SELECTED PURPOSES=1 **\$END TP FUNCTION \$MATRIX MANIPULATE \$FILES** INPUT FILE=TMAN1, USER ID=\$T030ATOT.DAT\$ INPUT FILE=TMAN2, USER ID=\$T030ATRS.DAT\$ OUTPUT FILE=TMAN3, USER ID=\$T030ACOM.DAT\$ **\$HEADERS** NETWORK W005BNET.DAT COMBINING TOTAL AND TRANSPOSE TRIP TABLES FOR MATRIX UPDATE \$DATA TMAN3,T1=TMAN1,T1+TMAN2,T1 **\$END TP FUNCTION \$MATRIX UPDATE \$FILES**

INPUT FILE=UPDIN, USER ID=\$T030ACOM.DAT\$ OUTPUT FILE=UPDOUT, USER ID=\$T030ALOD.DAT\$ **\$HEADERS** NETWORK W005BNET.DAT **DIVIDING COMBINED TRIP TABLE BY 2** FOR DAILY 24-HOUR ASSIGNMENT **\$OPTIONS** PRINT TRIP ENDS **\$DATA** T1,1-227,1-227,*0.5 **\$END TP FUNCTION**

\$EQUILIBRIUM HIGHWAY LOAD \$FILES INPUT FILE=HWYNET, USER ID=\$U030BNET.DAT\$ INPUT FILE=HWYTRIP, USER ID=\$T030ALOD.DAT\$ INPUT FILE=TRNDATA, USER ID=\$K25JTURN.PRN\$ OUTPUT FILE=LODHIST, USER ID=\$U030LNET.LOD\$ **\$HEADERS** KENT AND SUSSEX COUNTY NETWORK - W005BNET.DAT EQUILIBRIUM HIGHWAY LOAD - NO BUILD MODEL RUN YEAR 2030 AADT LOAD WITH TOLLS **\$OPTIONS TURN FILE \$PARAMETERS EQUILIBRIUM ITERATIONS = 10** EPS = 0.05\$END TP FUNCTION

Kent County Travel Demand Model	File Summary
---------------------------------	--------------

Year	LOD File Name	Netcard File Name *
2010	U010LNET.LOD	KC10.TXT
2020	U020LNET.LOD	KC20.TXT
2030	U030LNET.LOD	KC30.TXT

*Note: Travel Demand Model output files available upon request.

2010 MOBILE 6.2 Input File

MOBILE6 INPUT FILE : * Mobile 6 Delaware Kent County Inputs according to previous m5b inputs and 2004 Registration Data : HC CO NOx POLLUTANTS REPORT FILE : KC10.out RUN DATA VMT FRACTIONS 0.4964 0.0630 0.2099 0.0825 0.0379 0.0356 0.0087 0.0035 0.0014 0.0045 0.0048 0.0087 0.0049 0.0034 0.0048 0.0300 REG DIST : kcreq04.d I/M PROGRAM : 1 1991 2050 2 T/O 2500/IDLE I/M MODEL YEARS : 1 1981 1995 : 1 22222 11111111 1 I/M VEHICLES I/M STRINGENCY : 1 20.0 : 1 96.0 I/M COMPLIANCE I/M WAIVER RATES : 1 3.0 3.0 NO I/M TTC CREDITS : 1 I/M PROGRAM : 2 1995 2050 2 T/O FP & GC I/M STRINGENCY : 2 20.0 : 2 96.0 I/M COMPLIANCE I/M WAIVER RATES : 2 0.0 0.0 I/M MODEL YEARS : 2 1975 1995 I/M VEHICLES : 2 22222 11111111 1 : 3 2002 2050 2 T/O OBD I/M I/M PROGRAM : 3 1996 2050 I/M MODEL YEARS I/M VEHICLES : 3 22222 11111111 1 I/M STRINGENCY : 3 20.0 : 3 96.0 I/M COMPLIANCE I/M WAIVER RATES : 3 3.0 3.0 I/M GRACE PERIOD : 3 5 ANTI-TAMPERING PROG: 95 75 05 22222 11111111 1 11 096. 12211112 MIN/MAX TEMPERATURE: 71. 96. : 2 N FUEL PROGRAM FUEL RVP : 8.1 *Freeway SCENARIO RECORD : Scenario Title : DE speed 65 > 2005 Speed 65 mph (Freeway) * This text is for annotating this file and is otherwise ignored. ABSOLUTE HUMIDITY : 75.0 CALENDAR YEAR : 2010 EVALUATION MONTH : 7 ALTITUDE : 1 AVERAGE SPEED : 65 Freeway 92.0 0.0 0.0 8.0 SCENARIO RECORD : Scenario Title : DE speed 2.7 > 2005 Speed 2.7 mph (Freeway) * This text is for annotating this file and is otherwise ignored. ABSOLUTE HUMIDITY : 75.0 : 2010 CALENDAR YEAR EVALUATION MONTH : 7 : 1 ALTITUDE AVERAGE SPEED : 2.7 Freeway 92.0 0.0 0.0 8.0 VMT FRACTIONS 0.4964 0.0630 0.2099 0.0825 0.0379 0.0356 0.0087 0.0035 0.0014 0.0045 0.0048 0.0087 0.0049 0.0034 0.0048 0.0300 REG DIST : kcreg04.d I/M PROGRAM : 1 1991 2050 2 T/O 2500/IDLE : 1 1981 1995 : 1 22222 11111111 1 I/M MODEL YEARS I/M VEHICLES : 1 20.0 : 1 96.0 I/M STRINGENCY I/M COMPLIANCE I/M WAIVER RATES : 1 3.0 3.0

I/M MODEL YEARS I/M VEHICLES I/M PROGRAM I/M MODEL YEARS I/M VEHICLES I/M STRINGENCY I/M COMPLIANCE I/M WAIVER RATES I/M GRACE PERIOD ANTI-TAMPERING PROD	: 2 1995 2050 2 T/O FP & GC : 2 20.0 : 2 96.0 : 2 1975 1995 : 2 22222 1111111 1 : 3 2002 2050 2 T/O OBD I/M : 3 1996 2050 : 3 22222 1111111 1 : 3 20.0 : 3 96.0 : 3 3.0 3.0 : 3 5
MIN/MAX TEMPERATUR FUEL PROGRAM FUEL RVP	: 2 N
> 2005 Speed 65 mp	<pre>annotating this file and is otherwise ignored. : 75.0 : 2010 : 7 : 1</pre>

> 2005 Speed 2.5 mp	<pre>annotating this file and is otherwise ignored. : 75.0 : 2010 : 7 : 1 </pre>
> 2005 Speed 12.9 r	<pre>annotating this file and is otherwise ignored. : 75.0 : 0.5 : 2010 : 7</pre>
AVERAGE SPEED END OF RUN	

Note: Same input file format used for analysis years 2020 and 2030.

2010 MOBILE 6.2 Output

Kent County 2010 Summer Mobile 6.2 Emission Factors

	Arterial			Freeway			Local	
Vehicle	VOCs	NOx	Vehicle	VOCs	NOx	Vehicle	VOCs	NOx
Speed	Emission Factor	Emission Factor	Speed	Emission Factor	Emission Factor	Speed	Emission Factor	Emission Factor
(mph)	(g/veh-mile)	(g/veh-mile)	(mph)	(g/veh-mile)	(g/veh-mile)	(mph)	(g/veh-mile)	(g/veh-mile)
2.5	4.63	1.63	2.7	4.32	1.59			
3 4	3.73 2.60	1.56 1.48	3 4	3.82 2.69	1.55 1.47			
4 5	1.93	1.48	4 5	2.09	1.47			
6	1.67	1.34	6	1.67	1.33			
7	1.48	1.28	7	1.48	1.24			
8	1.35	1.23	8	1.34	1.18			
9	1.24	1.20	9	1.23	1.13			
10	1.15	1.17	10	1.14	1.09			
11	1.10	1.13	11	1.07	1.05			
12	1.05	1.09	12	1.02	1.01			
13	1.01	1.06	13	0.98	0.97	12.9	1.00	0.90
14	0.97	1.03	14	0.94	0.94			
15	0.94	1.01	15	0.91	0.91			
16 17	0.92 0.89	0.99 0.97	16 17	0.89 0.87	0.90 0.89			
17	0.89	0.97	17	0.87	0.89			
18	0.87	0.95	18	0.83	0.89			
20	0.83	0.94	20	0.83	0.88			
20	0.82	0.91	20	0.81	0.87			
22	0.81	0.90	22	0.80	0.87			
23	0.79	0.89	23	0.79	0.87			
24	0.78	0.88	24	0.78	0.86			
25	0.77	0.87	25	0.77	0.86			
26	0.76	0.86	26	0.76	0.86			
27	0.75	0.86	27	0.75	0.86			
28	0.74	0.85	28	0.74	0.86			
29 30	0.74	0.84 0.84	29 30	0.74	0.85			
31	0.73 0.72	0.84	30	0.73 0.73	0.85			
32	0.72	0.83	32	0.72	0.85			
33	0.71	0.83	33	0.71	0.85			
34	0.70	0.83	34	0.71	0.85			
35	0.70	0.83	35	0.70	0.85			
36	0.69	0.83	36	0.70	0.85			
37	0.69	0.83	37	0.69	0.86			
38	0.69	0.84	38	0.69	0.86			
39	0.68	0.84	39	0.69	0.86			
40 41	0.68	0.84 0.85	40 41	0.68	0.86			
41 42	0.68	0.85	41 42	0.68	0.87			
42 43	0.67	0.85	42	0.67	0.88			
43	0.67	0.86	44	0.67	0.89			
45	0.66	0.87	45	0.67	0.89			
46	0.66	0.87	46	0.66	0.90			
47	0.66	0.88	47	0.66	0.91			
48	0.66	0.89	48	0.66	0.92			
49	0.65	0.90	49	0.66	0.93			
50	0.65	0.90	50	0.65	0.94			
51	0.65	0.91	51	0.65	0.95			
52 53	0.65	0.93 0.94	52 53	0.65	0.96 0.98			
53 54	0.64 0.64	0.94	53 54	0.65 0.65	0.98			
55	0.64	0.95	55	0.65	1.01			
56	0.64	0.97	56	0.65	1.02			
57	0.64	0.99	57	0.65	1.02			
58	0.64	1.00	58	0.65	1.06			
59	0.64	1.01	59	0.65	1.09			
60	0.64	1.03	60	0.66	1.11			
61	0.64	1.05	60.7	0.66	1.12			
62	0.65	1.07						
63	0.65	1.09						
64								
65	0.65 0.65	1.11 1.12						

NOTE: Emission factors were calculated by MOBILE6.2 and represent a composite vehicle type during summer conditions.

2020 MOBILE 6.2 Output

Kent County 2020 Summer Mobile 6.2 Emission Factors

	Arterial			Freeway			Local	
Vehicle	VOCs	NOx	Vehicle	VOCs	NOx	Vehicle	VOCs	NOx
Speed	Emission Factor	Emission Factor	Speed	Emission Factor	Emission Factor	Speed	Emission Factor	Emission Factor
(mph)	(g/veh-mile)	(g/veh-mile)	(mph)	(g/veh-mile)	(g/veh-mile)	(mph)	(g/veh-mile)	(g/veh-mile)
2.5	2.42	0.57	2.7	2.26	0.56			
3	1.96	0.55	3	2.01	0.54			
4	1.39	0.52	4	1.43	0.51			
5	1.04	0.50	5	1.09	0.49			
6	0.90	0.47	6	0.90	0.46			
7	0.80	0.44	7	0.80	0.43			
8	0.73	0.43	8	0.72	0.40			
9	0.67	0.41	9	0.66	0.38			
10	0.62	0.40	10	0.61	0.37			
11	0.59	0.39	11	0.57	0.35			
12	0.56	0.37	12	0.55	0.34			
13	0.54	0.36	13	0.52	0.32	12.9	0.54	0.31
14	0.52	0.35	14	0.50	0.31			
15	0.50	0.35	15	0.49	0.30			
16	0.49	0.34	16	0.47	0.30			
17	0.47	0.33	17	0.46	0.29			
18	0.46	0.33	18	0.45	0.29			
19	0.45	0.32	19	0.44	0.29			
20	0.44	0.32	20	0.43	0.29			
21	0.43	0.31	21	0.42	0.29			
22	0.42	0.31	22	0.42	0.29			
23	0.42	0.30	23	0.41	0.29			
24	0.41	0.30	24	0.41	0.29			
25	0.40	0.30	25	0.40	0.29			
26	0.40 0.39	0.30 0.29	26 27	0.40	0.29 0.29			
27 28	0.39	0.29	27	0.39 0.39	0.29			
28 29	0.39	0.29	28 29	0.39	0.29			
30	0.38	0.29	30	0.38	0.29			
31	0.37	0.29	31	0.37	0.29			
32	0.37	0.29	32	0.37	0.29			
33	0.37	0.29	33	0.37	0.29			
34	0.36	0.28	34	0.36	0.29			
35	0.36	0.28	35	0.36	0.29			
36	0.36	0.29	36	0.36	0.29			
37	0.36	0.29	37	0.36	0.29			
38	0.35	0.29	38	0.35	0.29			
39	0.35	0.29	39	0.35	0.29			
40	0.35	0.29	40	0.35	0.29			
41	0.35	0.29	41	0.35	0.30			
42	0.35	0.29	42	0.35	0.30			
43	0.34	0.29	43	0.34	0.30			
44	0.34	0.30	44	0.34	0.30			
45	0.34	0.30	45	0.34	0.30			
46	0.34	0.30	46	0.34	0.31			
47	0.34	0.30	47	0.34	0.31			
48	0.34	0.30	48	0.34	0.31			
49	0.34	0.31	49	0.34	0.31			
50 51	0.33	0.31	50 51	0.34	0.32			
	0.33	0.31			0.32			
52 53	0.33 0.33	0.32 0.32	52 53	0.33 0.33	0.32 0.33			
53 54	0.33	0.32	53 54	0.33	0.33			
55	0.33	0.32	55	0.34	0.33			
56	0.33	0.33	56	0.34	0.34			
57	0.33	0.33	57	0.34	0.35			
58	0.34	0.34	58	0.34	0.35			
59	0.34	0.34	59	0.35	0.36			
60	0.34	0.35	60	0.35	0.37			
61	0.34	0.35	60.7	0.35	0.37			
62	0.34	0.36						
63	0.34	0.36						
64	0.35	0.37						
65	0.35	0.37						
			IOME E I	sion factors wara calcul				

NOTE: Emission factors were calculated by MOBILE6.2 and represent a composite vehicle type during summer conditions.

2030 MOBILE 6.2 Output

Kent County 2030 Summer Mobile 6.2 Emission Factors

	Arterial			Freeway			Local	
Vehicle	VOCs	NOx	Vehicle	VOCs	NOx	Vehicle	VOCs	NOx
Speed	Emission Factor	Emission Factor	Speed	Emission Factor	Emission Factor	Speed	Emission Factor	Emission Factor
(mph)	(g/veh-mile)	(g/veh-mile)	(mph)	(g/veh-mile)	(g/veh-mile)	(mph)	(g/veh-mile)	(g/veh-mile)
2.5	2.26	0.42	2.7	2.11	0.40			
3	1.83	0.40	3	1.86	0.39			
4	1.28	0.37	4	1.32	0.37			
5	0.95	0.36	5	0.99	0.35			
6	0.82	0.34	6	0.82	0.33			
7	0.72	0.32	7	0.72	0.30			
8	0.65	0.31	8	0.65	0.28			
9	0.60	0.30	9	0.59	0.27			
10	0.55	0.29	10	0.54	0.25			
11	0.52	0.28	11	0.51	0.24			
12	0.50	0.27	12	0.48	0.23			
13	0.48	0.26	13	0.46	0.22	12.9	0.47	0.21
14	0.46	0.25	14	0.44	0.21			
15	0.44	0.24	15	0.43	0.21			
16	0.43	0.24	16	0.41	0.20			
17	0.41	0.23	17	0.40	0.20			
18	0.40	0.23	18	0.39	0.20			
19	0.39	0.23	19	0.38	0.20			
20	0.38	0.22	20	0.37	0.20			
21	0.37	0.22	21	0.37	0.20			
22	0.37	0.22	22	0.36	0.20			
23	0.36	0.21	23	0.35	0.20			
24	0.35	0.21	24	0.35	0.20			
25	0.35	0.21	25	0.34	0.20			
26	0.34	0.21	26	0.34	0.20			
27	0.34	0.21	27	0.33	0.20			
28	0.33	0.21	28	0.33	0.20			
29	0.33	0.20	29	0.33	0.20			
30	0.32	0.20	30	0.32	0.20			
31	0.32	0.20	31	0.32	0.20			
32	0.32	0.20	32	0.32	0.20			
33	0.31	0.20	33	0.31	0.20			
34	0.31	0.20	34	0.31	0.20			
35	0.31	0.20	35	0.31	0.20			
36	0.30	0.20	36	0.30	0.20			
37	0.30	0.20	37	0.30	0.20			
38	0.30	0.20	38	0.30	0.20			
39	0.30	0.20	39	0.30	0.20			
40	0.30	0.20	40	0.30	0.20			
41	0.29	0.20	41	0.29	0.21			
42	0.29	0.20	42	0.29	0.21			
43	0.29	0.21	43	0.29	0.21			
44	0.29	0.21	44	0.29	0.21			
45	0.29	0.21	45	0.29	0.21			
46 47	0.29	0.21	46 47	0.29	0.21 0.21			
	0.28	0.21		0.29				
48	0.28	0.21	48	0.28	0.21			
49	0.28	0.21	49	0.28	0.22			
50 51	0.28 0.28	0.21 0.22	50 51	0.28	0.22 0.22			<u> </u>
52	0.28	0.22	52 52	0.28	0.22			
53	0.28	0.22 0.22	53 54	0.28	0.23			
54 55	0.28 0.28	0.22	54 55	0.28 0.29	0.23 0.23			
55	0.28	0.22	55	0.29	0.23			
				0.29				
57 58	0.28 0.28	0.23 0.23	57 58	0.29	0.24 0.24			
58								
59	0.28	0.23	59 60	0.29	0.24			
60	0.29	0.24	60	0.30	0.25			
61	0.29	0.24	60.7	0.30	0.25			
62 62	0.29	0.24						
63	0.29	0.25						
64 65	0.29	0.25						
05	0.30	0.25			ated by MOBILE6.2 and			

NOTE: Emission factors were calculated by MOBILE6.2 and represent a composite vehicle type during summer conditions.

VEHICLE MILES OF TRAVEL Kent County

Functional Class	Network Model Output	HPMS & Seasonal Factor Adjusted	
Interstate-Rural	0	0	
Other PA-Rural	1,591,655	1,351,315	
Minor ArtRural	376,928	471,536	
Major CollRural	696,953	540,836	
Minor CollRural	24,231	66,586	
Local-Rural	104,620	589,322	
Interstate-Urban	0	0	
Other F/E-Urban	224,302	317,164	
Other PA-Urban	110,468	430,604	
Minor ArtUrban	450,051	927,555	
Collector-Urban	88,400	330,615	
Local-Urban	13,979	346,014	
Total	3,681,585	5,371,546	

Input Tranpłan File: T:\08904.00\tech\Tech 03792\CONFORMITY\2005 Conformity\Kent\Traffic\KC10.TXT Input Mobile File: T:\08904.00\tech\Tech 03792\CONFORMITY\2005 Conformity\Kent\Mobile\2010\KC10.OUT

Total Volatile Organic Compound Emissions(grams/day)

Kent County

Functional Class	LDGV	LDGT1	LDGT2	HDGV	LDDV	LDDT	HDDV	МС	Total
Interstate-Rural	0	0	0	0	0	0	0	0	0
Other PA-Rural	412,663	218,065	99,083	29,519	96	645	29,519	132,723	908,301
Minor ArtRural	148,305	77,972	35,472	10,816	35	239	10,816	45,586	324,376
Major CollRural	173,978	91,183	41,500	12,842	42	284	12,842	53,103	380,117
Minor CollRural	21,510	11,270	5,130	1,603	5	36	1,603	6,584	47,053
Local-Rural	267,166	137,506	62,974	25,355	78	554	25,355	81,680	592,426
Interstate-Urban	0	0	0	0	0	0	0	0	0
Other F/E-Urban	92,872	49,458	22,423	6,506	21	142	6,506	34,515	209,187
Other PA-Urban	138,521	72,543	33,011	10,294	34	230	10,294	42,474	302,992
Minor ArtUrban	312,028	162,858	74,175	24,051	79	539	24,051	95,592	683,625
Collector-Urban	114,955	59,868	27,292	9,119	30	205	9,119	35,204	252,257
Local-Urban	156,863	80,735	36,975	14,887	46	325	14,887	47,958	347,836
Total	1,838,861	961,459	438,036	144,991	465	3,199	85,740	575,418	4,048,170
Total (in Tons)	2.03	1.06	0.48	0.16	0.00	0.00	0.09	0.63	4.46

Input Tranplan File: T:\08904.00\tech\Tech 03792\CONFORMITY\2005 Conformity\Kent\Traffic\KC10.TXT Input Mobile File: T:\08904.00\tech\Tech 03792\CONFORMITY\2005 Conformity\Kent\Mobile\2010\KC10.OUT

Total Nitrogen Oxide Emissions(grams/day)

Kent County

Functional Class	LDGV	LDGT1	LDGT2	HDGV	LDDV	LDDT	HDDV	МС	Total
Interstate-Rural	0	0	0	0	0	0	0	0	0
Other PA-Rural	357,786	227,418	123,658	91,225	261	1,425	91,225	53,842	1,246,051
Minor ArtRural	123,846	78,053	42,584	30,330	79	432	30,330	17,338	410,939
Major CollRural	142,351	89,313	48,793	34,079	88	477	34,079	19,344	464,944
Minor CollRural	17,594	11,011	6,018	4,156	11	59	4,156	2,361	57,258
Local-Rural	160,767	96,174	52,630	29,961	122	666	29,961	16,972	533,269
Interstate-Urban	0	0	0	0	0	0	0	0	0
Other F/E-Urban	87,309	56,235	30,409	23,251	84	459	23,251	15,050	344,035
Other PA-Urban	111,850	70,097	38,368	26,685	68	372	26,685	15,300	364,318
Minor ArtUrban	250,617	155,317	84,955	56,063	151	822	56,063	32,053	804,863
Collector-Urban	92,169	56,638	30,970	19,584	55	300	19,584	11,145	292,983
Local-Urban	94,393	56,467	30,901	17,591	72	391	17,591	9,965	313,103
Total	1,438,682	896,723	489,286	332,925	991	5,404	1,474,381	193,371	4,831,765
Total (in Tons)	1.59	0.99	0.54	0.37	0.00	0.01	1.63	0.21	5.33

Input Tranplan File: T:\08904.00\tech\Tech 03792\CONFORMITY\2005 Conformity\Kent\Traffic\KC10.TXT Input Mobile File: T:\08904.00\tech\Tech 03792\CONFORMITY\2005 Conformity\Kent\Mobile\2010\KC10.OUT

Table: 1 VEHICLE MILES OF TRAVEL Kent County

	Network Model	HPMS & Seasonal Factor	
unctional Class	Output	Adjusted	
Interstate-Rural	0	0	
Other PA-Rural	1,699,737	1,443,077	
Minor ArtRural	404,565	506,111	
Major CollRural	810,115	628,650	
Minor CollRural	26,198	71,991	
Local-Rural	109,907	619,105	
Interstate-Urban	0	0	
Other F/E-Urban	249,966	353,452	
Other PA-Urban	108,861	424,339	
Minor ArtUrban	469,232	967,088	
Collector-Urban	93,075	348,099	
Local-Urban	21,270	526,471	
Total	3,992,925	5,888,382	

Input Tranplan File: T:\08904.00\tech\Tech 03792\CONFORMITY\2005 Conformity\Kent\Traffic\KC20.TXT

Input Mobile File: T:\08904.00\tech\Tech 03792\CONFORMITY\2005 Conformity\Kent\Mobile\2020\KC20.OUT

Total Volatile Organic Compound Emissions(grams/day)

Kent County

Functional Class	LDGV	LDGT1	LDGT2	HDGV	LDDV	LDDT	HDDV	МС	Total
Interstate-Rural	0	0	0	0	0	0	0	0	0
Other PA-Rural	190,741	109,444	52,043	15,694	34	282	15,694	126,223	505,658
Minor ArtRural	69,158	39,348	18,726	5,809	13	106	5,809	43,800	181,321
Major CollRural	87,836	49,824	23,694	7,426	16	135	7,426	55,203	229,760
Minor CollRural	10,085	5,712	2,718	861	2	16	861	6,364	26,425
Local-Rural	126,515	70,623	33,409	12,938	27	236	12,938	79,122	334,974
Interstate-Urban	0	0	0	0	0	0	0	0	0
Other F/E-Urban	44,695	26,050	12,381	3,603	8	64	3,603	34,399	123,648
Other PA-Urban	60,312	34,016	16,199	5,197	11	96	5,197	38,076	158,022
Minor ArtUrban	142,026	80,003	38,074	12,433	27	230	12,433	89,527	372,417
Collector-Urban	52,823	29,731	14,142	4,700	10	87	4,700	33,215	138,613
Local-Urban	107,585	60,056	28,410	11,002	23	201	11,002	67,283	284,853
Total	891,777	504,807	239,797	79,661	172	1,454	64,810	573,212	2,355,691
Total (in Tons)	0.98	0.56	0.26	0.09	0.00	0.00	0.07	0.63	2.60

Input Tranplan File: T:\08904.00\tech\Tech 03792\CONFORMITY\2005 Conformity\Kent\Traffic\KC20.TXT Input Mobile File: T:\08904.00\tech\Tech 03792\CONFORMITY\2005 Conformity\Kent\Mobile\2020\KC20.OUT

Total Nitrogen Oxide Emissions(grams/day)

Kent County

Functional Class	LDGV	LDGT1	LDGT2	HDGV	LDDV	LDDT	HDDV	MC	Total
Interstate-Rural	0	0	0	0	0	0	0	0	0
Other PA-Rural	126,688	96,535	56,337	25,954	45	459	25,954	57,331	456,534
Minor ArtRural	44,136	33,237	19,447	8,655	14	140	8,655	18,536	152,543
Major CollRural	55,061	41,241	24,155	10,588	16	169	10,588	22,505	187,865
Minor CollRural	6,311	4,711	2,760	1,196	2	19	1,196	2,547	21,419
Local-Rural	59,573	41,056	23,203	8,411	21	212	8,411	17,830	192,504
Interstate-Urban	0	0	0	0	0	0	0	0	0
Other F/E-Urban	32,177	24,985	14,587	6,900	15	153	6,900	16,679	127,650
Other PA-Urban	36,978	27,534	16,169	6,935	11	112	6,935	14,917	125,232
Minor ArtUrban	87,220	64,243	37,653	15,579	25	260	15,579	33,355	290,830
Collector-Urban	32,536	23,724	13,896	5,543	9	96	5,543	11,795	107,067
Local-Urban	50,659	34,913	19,731	7,152	17	180	7,152	15,162	163,701
Total	531,338	392,179	227,937	96,912	175	1,799	364,346	210,657	1,825,344
Total (in Tons)	0.59	0.43	0.25	0.11	0.00	0.00	0.40	0.23	2.01

Input Tranplan File: T:\08904.00\tech\Tech 03792\CONFORMITY\2005 Conformity\Kent\Traffic\KC20.TXT Input Mobile File: T:\08904.00\tech\Tech 03792\CONFORMITY\2005 Conformity\Kent\Mobile\2020\KC20.OUT

VEHICLE MILES OF TRAVEL Kent County

	Network Model	HPMS & Seasonal Factor
Functional Class	Output	Adjusted
Interstate-Rural	0	0
Other PA-Rural	1,929,310	1,637,984
Minor ArtRural	473,556	592,418
Major CollRural	911,975	707,693
Minor CollRural	30,855	84,788
Local-Rural	123,585	696,156
Interstate-Urban	0	0
Other F/E-Urban	285,370	403,513
Other PA-Urban	119,508	465,841
Minor ArtUrban	529,339	1,090,967
Collector-Urban	105,920	396,142
Local-Urban	24,004	594,156
Total	4,533,421	6,669,658

Input Tranplan File: T:\08904.00\tech\Tech 03792\CONFORMITY\2005 Conformity\Kent\Traffic\KC30.TXT

Input Mobile File: T:\08904.00\tech\Tech 03792\CONFORMITY\2005 Conformity\Kent\Mobile\2030\KC30.OUT

Total Volatile Organic Compound Emissions(grams/day)

Kent County

Functional Class	LDGV	LDGT1	LDGT2	HDGV	LDDV	LDDT	HDDV	MC	Total
Interstate-Rural	0	0	0	0	0	0	0	0	0
Other PA-Rural	172,051	107,617	48,650	13,455	27	231	13,455	132,581	486,341
Minor ArtRural	64,734	40,022	18,099	5,159	10	90	5,159	47,674	180,499
Major CollRural	80,242	49,281	22,290	6,451	13	112	6,451	58,327	222,686
Minor CollRural	9,608	5,891	2,665	778	2	14	778	7,019	26,716
Local-Rural	119,817	71,243	32,117	11,245	22	200	11,245	84,583	331,772
Interstate-Urban	0	0	0	0	0	0	0	0	0
Other F/E-Urban	40,242	25,679	11,611	3,084	6	53	3,084	35,777	119,023
Other PA-Urban	53,526	32,699	14,787	4,371	9	78	4,371	39,126	148,787
Minor ArtUrban	130,933	79,579	36,001	10,858	22	194	10,858	95,204	363,510
Collector-Urban	49,173	29,840	13,504	4,127	8	74	4,127	35,592	136,458
Local-Urban	102,261	60,804	27,412	9,597	19	171	9,597	72,190	283,162
Total	822,587	502,653	227,135	69,125	139	1,216	68,027	608,073	2,298,956
Total (in Tons)	0.91	0.55	0.25	0.08	0.00	0.00	0.07	0.67	2.53

Input Tranplan File: T:\08904.00\tech\Tech 03792\CONFORMITY\2005 Conformity\Kent\Traffic\KC30.TXT Input Mobile File: T:\08904.00\tech\Tech 03792\CONFORMITY\2005 Conformity\Kent\Mobile\2030\KC30.OUT

Total Nitrogen Oxide Emissions(grams/day)

Kent County

Functional Class	LDGV	LDGT1	LDGT2	HDGV	LDDV	LDDT	HDDV	МС	Total
Interstate-Rural	0	0	0	0	0	0	0	0	0
Other PA-Rural	103,946	88,647	50,618	10,239	19	363	10,239	64,759	360,759
Minor ArtRural	37,651	31,593	18,048	3,534	6	116	3,534	21,717	126,124
Major CollRural	45,518	37,759	21,601	4,137	7	134	4,137	25,246	149,935
Minor CollRural	5,443	4,503	2,574	488	1	16	488	2,988	17,850
Local-Rural	50,068	37,236	20,311	3,281	9	168	3,281	20,049	150,654
Interstate-Urban	0	0	0	0	0	0	0	0	0
Other F/E-Urban	26,330	23,029	13,221	2,720	6	117	2,720	18,653	97,795
Other PA-Urban	29,809	24,558	14,056	2,652	5	87	2,652	16,349	97,536
Minor ArtUrban	72,517	58,904	33,716	6,087	11	207	6,087	37,422	232,762
Collector-Urban	27,308	21,961	12,567	2,192	4	77	2,192	13,392	86,438
Local-Urban	42,732	31,780	17,335	2,800	8	143	2,800	17,112	128,581
Total	441,321	359,970	204,047	38,128	76	1,429	165,776	237,686	1,448,435
Total (in Tons)	0.49	0.40	0.22	0.04	0.00	0.00	0.18	0.26	1.60

Input Tranplan File: T:\08904.00\tech\Tech 03792\CONFORMITY\2005 Conformity\Kent\Traffic\KC30.TXT Input Mobile File: T:\08904.00\tech\Tech 03792\CONFORMITY\2005 Conformity\Kent\Mobile\2030\KC30.OUT

Delaware Mobile Source Emissions Calculations					
VMT AND TOTAL EMISSIONS BY Year (in tons per summer day)					
	Kent County				
Year	VMT	VOC	Budget	Nox	Budget
2005			5.14		8.42
2010	5,371,546	4.46		5.33	
2020	5,888,382	2.60		2.01	
2030	6,669,658	2.53		1.60	

Notes:

1) The emission calculations for all analysis years above used 2004 registration data for vehicle age distribution and fleet mix